Ionoprinted Multi-Responsive Hydrogel Actuators

نویسندگان

  • Daniel Morales
  • Igor Podolsky
  • Russell W. Mailen
  • Timothy Shay
  • Michael D. Dickey
  • Orlin D. Velev
چکیده

We report multi-responsive and double-folding bilayer hydrogel sheet actuators, whose directional bending response is tuned by modulating the solvent quality and temperature and where locally crosslinked regions, induced by ionoprinting, enable the actuators to invert their bending axis. The sheets are made multi-responsive by combining two stimuli responsive gels that incur opposing and complementary swelling and shrinking responses to the same stimulus. The lower critical solution temperature (LCST) can be tuned to specific temperatures depending on the EtOH concentration, enabling the actuators to change direction isothermally. Higher EtOH concentrations cause upper critical solution temperature (UCST) behavior in the poly(N-isopropylacrylamide) (pNIPAAm) gel networks, which can induce an amplifying effect during bilayer bending. External ionoprints reliably and repeatedly invert the gel bilayer bending axis between water and EtOH. Placing the ionoprint at the gel/gel interface can lead to opposite shape conformations, but with no clear trend in the bending behavior. We hypothesize that this is due to the ionoprint passing through the neutral axis of the bilayer during shrinking in hot water. Finally, we demonstrate the ability of the actuators to achieve shapes unique to the specific external conditions towards developing more responsive and adaptive soft actuator devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow control with hydrogels.

With the advent of the genomic revolution and the sequencing of the human genome complete, the majority of pharmaceuticals under development are proteins. Consequently, new techniques to more effectively administer these new protein therapeutics need to be developed. One method that is gaining popularity in the research community involves the use of responsive hydrogel actuators for flow contro...

متن کامل

Core–Shell Microcapsules With Embedded Microactuators for Regulated Release

Core–shell microcapsules capable of regulating the release profile of encapsulated molecules are developed. These microcapsules uniquely embed miniature actuators in their liquid core. The internal actuators are made of stimuli-responsive smart hydrogel beads. The embedded hydrogel beads swell in response to external electric fields, regulating the internal pressure of the liquid core and thus ...

متن کامل

Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles

To overcome the slow kinetics of the volume phase transition of stimuli-responsive hydrogels as platforms for soft actuators, thermally responsive comb-type hydrogels were prepared using synthesized poly(N-isopropylacrylamide) macromonomers bearing graft chains. Fast responding light-responsive hydrogels were fabricated by combining a comb-type hydrogel matrix with photothermal magnetite nanopa...

متن کامل

Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH.

IO N Responsive and reversibly actuating surfaces have attracted signifi cant attention recently due to their promising applications as dynamic materials [ 1 ] that may enable microfl uidic mixing, [ 2 ] particle propulsion and fl uid transport, [ 3 ] capture and release systems, [ 4 ] and antifouling. [ 5 ] Analogs in nature serve as inspiration for the design of such advanced adaptive materia...

متن کامل

Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators.

We describe and characterize elementary designs for electrochemical micro- and macro-scale chemomechanical hydrogel actuators. The actuation of a pH-sensitive cross-linked polyacrylic acid (PAA) hydrogel is driven in the model devices through the oxygen reduction reaction (ORR) occurring at the electrodes of an embedded Au mesh micro-electrochemical array. Proton consumption by the ORR at the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Micromachines

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016